User:Srrwiki/sandbox

From Wikipedia, the free encyclopedia

The proper distance provides a measurement of how far is a galaxy at a fixed moment in time. At the present time the proper distance equals the comoving distance since the cosmological scale factor has value one: . The proper distance represents the distance obtained as if one were able to freeze the flow of time (set in the FLRW metric) and walk all the way to a galaxy while using a meter stick[1]. For practical reason is calculated as the distance traveled by light (set in the FLRW metric) from the time of emission by the galaxy to an observer (on Earth) at the present time. It differs form the light travel distance since the proper distance takes into account the expansion of the universe, i.e. the space expands as the light travels through it, resulting in numerical values which locate the most distant galaxies beyond the Hubble sphere and therefore with recessional velocities greater than the speed of light.[2]  

Most distant spectroscopically-confirmed objects[edit]

Most distant astronomical objects with spectroscopic redshift determinations
Image Name Redshift

(z)

Light travel distance§

(Gly)[3][4][5][6]

Proper distance

(Gly)

Type Notes
JADES-GS-z13-0 z = 13.20+0.04
−0.07
13.576[3] / 13.596[4] / 13.474[5] / 13.473[6] 33.6 Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[7] Possibly a dark star.[8]
UNCOVER-z13 z = 13.079+0.014
−0.001
13.51 Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[9]
JADES-GS-z12-0 z = 12.63+0.24
−0.08
13.556[3] / 13.576[4] / 13.454[5] / 13.453[6] Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[7] Possibly a dark star.[8]
UNCOVER-z12 z = 12.393+0.004
−0.001
13.48 Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[9]
GLASS-z12 z = 12.117+0.01
−0.01
13.536[3] / 13.556[4] / 13.434[5] / 13.433[6] 33.2 Galaxy Lyman-break galaxy discovered by JWST/NIRCam, confirmed by ALMA detection of [O III] emission[10]
UDFj-39546284 z = 11.58+0.05
−0.05
13.512[3] / 13.532[4] / 13.410[5] / 13.409[6] Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[7] Possibly a dark star.[8]
CEERS J141946.36+525632.8

(Maisie's Galaxy)

[11]

z = 11.44+0.09
−0.08
13.4 Galaxy Lyman-break galaxy discovered by JWST
CEERS2 588


[12]

z = 11.04 13.45 Galaxy Lyman-break galaxy discovered by JWST
GN-z11 z = 10.6034 ± 0.0013 13.481[3] / 13.501[4] / 13.380[5] / 13.379[6] Galaxy Lyman-break galaxy; detection of the Lyman break with HST at 5.5σ[13] and carbon emission lines with Keck/MOSFIRE at 5.3σ.[14] Conclusive redshift by JWST in February 2023[15]
JADES-GS-z10-0 UDFj-39546284 z = 10.38+0.07
−0.06
13.449[3] / 13.469[4] / 13.348[5] / 13.347[6] Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec[7]
JD1 z = 9.793±0.002 13.409[3] / 13.429[4] / 13.308[5] / 13.307[6] Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec[16]
MACS1149-JD1 z = 9.1096±0.0006 13.361[3] / 13.381[4] / 13.261[5] / 13.260[6] 30.37 Galaxy Detection of hydrogen emission line with the VLT, and oxygen line with ALMA[17]
EGSY8p7 z = 8.683+0.001
−0.004
13.325[3] / 13.345[4] / 13.225[5] / 13.224[6] 30.05 Galaxy Lyman-alpha emitter; detection of Lyman-alpha with Keck/MOSFIRE at 7.5σ confidence[18]
SMACS-4590 z = 8.496 13.308[3] / 13.328[4] / 13.208[5] / 13.207[6] Galaxy Detection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec[19][20][21][22]
A2744 YD4 z = 8.38 13.297[3] / 13.317[4] / 13.197[5] / 13.196[6] Galaxy Lyman-alpha and [O III] emission detected with ALMA at 4.0σ confidence[23]
MACS0416 Y1 z = 8.3118±0.0003 13.290[3] / 13.310[4] / 13.190[5] / 13.189[6] Galaxy [O III] emission detected with ALMA at 6.3σ confidence[24]
GRB 090423 z = 8.23+0.06
−0.07
13.282[3] / 13.302[4] / 13.182[5] / 13.181[6] 30.00 Gamma-ray burst Lyman-alpha break detected[25]
RXJ2129-11002 z = 8.16±0.01 13.175[3] Galaxy [O III] doublet, Hβ, and [O II] doublet as well as Lyman-alpha break detected with JWST/NIRSpec prism[26]
RXJ2129-11022 z = 8.15±0.01 13.174[3] Galaxy [O III] doublet and Hβ as well as Lyman-alpha break detected with JWST/NIRSpec prism[26]
EGS-zs8-1 z = 7.7302±0.0006 13.228[3] / 13.248[4] / 13.129[5] / 13.128[6] 29.5 Galaxy Lyman-break galaxy[27]
SMACS-6355 z = 7.665 13.221[3] / 13.241[4] / 13.121[5] / 13.120[6] Galaxy Detection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec[19][20][21][22]
z7_GSD_3811 z = 7.6637±0.0011 13.221[3] / 13.240[4] / 13.121[5] / 13.120[6] Galaxy Lyman-alpha emitter[28]
SMACS-10612 z = 7.658 13.221[3] / 13.241[4] / 13.120[5] / 13.119[6] Galaxy Detection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec[19][20][21]>[22]
QSO J0313–1806 z = 7.6423±0.0013 13.218[3] / 13.238[4] / 13.119[5] / 13.118[6] 30.00 Quasar Lyman-alpha break detected[29]
ULAS J1342+0928 z = 7.5413±0.0007 13.206[3] / 13.226[4] / 13.107[5] / 13.106[6] 29.36 Quasar Redshift estimated from [C II] emission[30]
z8_GND_5296 z = 7.51 13.202[3] / 13.222[4] / 13.103[5] / 13.102[6] 30.01 Galaxy Lyman-alpha emitter[31]
A1689-zD1 z = 7.5±0.2 13.201[3] / 13.221[4] / 13.102[5] / 13.101[6] 30 Galaxy Lyman-break galaxy[32]
GS2_1406 z = 7.452±0.003 13.195[3] / 13.215[4] / 13.096[5] / 13.095[6] Galaxy Lyman-alpha emitter[33]
GN-108036 z = 7.213 13.164[3] / 13.184[4] / 13.065[5] / 13.064[6] Galaxy Lyman alpha emitter[34]
SXDF-NB1006-2 z = 7.2120±0.0003 13.164[3] / 13.184[4] / 13.065[5] / 13.064[6] Galaxy [O III] emission detected[35]
BDF-3299 z = 7.109±0.002 13.149[3] / 13.169[4] / 13.051[5] / 13.050[6] Galaxy Lyman-break galaxy[36]
ULAS J1120+0641 z = 7.085±0.003 13.146[3] / 13.166[4] / 13.048[5] / 13.047[6] Quasar Redshift estimated from Si III]+C III] and Mg II emission lines[37]
A1703 zD6 z = 7.045±0.004 13.140[3] / 13.160[4] / 13.042[5] / 13.041[6] Galaxy Gravitationally-lensed Lyman-alpha emitter[38]
BDF-521 z = 7.008±0.002 13.135[3] / 13.155[4] / 13.037[5] / 13.036[6] Galaxy Lyman-break galaxy[36]
G2_1408 z = 6.972±0.002 13.130[3] / 13.150[4] / 13.032[5] / 13.030[6] Galaxy Lyman-alpha emitter[39]
IOK-1 z = 6.965 13.129[3] / 13.149[4] / 13.030[5] / 13.029[6] Galaxy Lyman-alpha emitter[34]
LAE J095950.99+021219.1 z = 6.944 13.126[3] / 13.146[4] / 13.028[5] / 13.027[6] Galaxy Lyman-alpha emitter[40]
SDF-46975 z = 6.844 13.111[3] / 13.131[4] / 13.013[5] / 13.012[6] Galaxy Lyman-alpha emitter[34]
PSO J172.3556+18.7734 z = 6.823+0.003
−0.001
13.107[3] / 13.127[4] / 13.010[5] / 13.009[6] Quasar

(astrophysical jet)

Redshift estimated from Mg II emission[41]
§ The tabulated distance is the light travel distance, which has no direct physical significance. See discussion at distance measures and Observable Universe

Test citation[42]

  1. ^ Guidry, Mike (2019). Modern general relativity: black holes, gravitational waves, and cosmology. Cambridge New York: Cambridge university press. ISBN 978-1-107-19789-3.
  2. ^ Davis, Tamara M.; Lineweaver, Charles H. (2004). "Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe". Publications of the Astronomical Society of Australia. 21 (1): 97–109. doi:10.1071/AS03040. ISSN 1323-3580.
  3. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj Staff (2015). "UCLA Cosmological Calculator". UCLA. Retrieved 6 August 2022. Light travel distance was calculated from redshift value using the UCLA Cosmological Calculator, with parameters values as of 2015: H0=67.74 and OmegaM=0.3089 (see Table/Planck2015 at "Lambda-CDM model#Parameters" )
  4. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah Staff (2018). "UCLA Cosmological Calculator". UCLA. Retrieved 6 August 2022. Light travel distance was calculated from redshift value using the UCLA Cosmological Calculator, with parameters values as of 2018: H0=67.4 and OmegaM=0.315 (see Table/Planck2018 at "Lambda-CDM model#Parameters" )
  5. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah Staff (2022). "ICRAR Cosmology Calculator". International Centre for Radio Astronomy Research. Retrieved 6 August 2022. ICRAR Cosmology Calculator - Set H0=67.4 and OmegaM=0.315 (see Table/Planck2018 at "Lambda-CDM model#Parameters")
  6. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah Kempner, Joshua (2022). "KEMPNER Cosmology Calculator". Kempner.net. Retrieved 6 August 2022. KEMP Cosmology Calculator - Set H0=67.4, OmegaM=0.315, and OmegaΛ=0.6847 (see Table/Planck2018 at "Lambda-CDM model#Parameters")
  7. ^ a b c d Robertson, B. E.; et al. (2023). "Identification and properties of intense star-forming galaxies at redshifts z > 10". Nature Astronomy. 7 (5): 611–621. arXiv:2212.04480. Bibcode:2023NatAs...7..611R. doi:10.1038/s41550-023-01921-1. S2CID 257968812.
  8. ^ a b c Ilie, Cosmin; Paulin, Jillian; Freese, Katherine (2023-07-25). "Supermassive Dark Star candidates seen by JWST". Proceedings of the National Academy of Sciences. 120 (30). doi:10.1073/pnas.2305762120. ISSN 0027-8424. PMC 10372643. PMID 37433001.
  9. ^ a b Wang, Bingjie; et al. (2023-11-13). "UNCOVER: Illuminating the Early Universe—JWST/NIRSpec Confirmation of z > 12 Galaxies". The Astrophysical Journal Letters. 957 (2): L34. doi:10.3847/2041-8213/acfe07. ISSN 2041-8205.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  10. ^ Bakx, Tom J. L. C.; et al. (January 2023). "Deep ALMA redshift search of a z~12 GLASS-JWST galaxy candidate". Monthly Notices of the Royal Astronomical Society. 519 (4): 5076–5085. arXiv:2208.13642. doi:10.1093/mnras/stac3723.
  11. ^ Haro, Pablo Arrabal; Dickinson, Mark; Finkelstein, Steven L.; Kartaltepe, Jeyhan S.; Donnan, Callum T.; Burgarella, Denis; Carnall, Adam; Cullen, Fergus; Dunlop, James S.; Fernández, Vital; Fujimoto, Seiji; Jung, Intae; Krips, Melanie; Larson, Rebecca L.; Papovich, Casey (2023-08-14). "Confirmation and refutation of very luminous galaxies in the early universe". Nature. arXiv:2303.15431. doi:10.1038/s41586-023-06521-7. ISSN 0028-0836.
  12. ^ A bot will complete this citation soon. Click here to jump the queue arXiv:2304.06658.
  13. ^ Oesch, P. A.; Brammer, G.; van Dokkum, P.; et al. (March 2016). "A Remarkably Luminous Galaxy at z=11.1 Measured with Hubble Space Telescope Grism Spectroscopy". The Astrophysical Journal. 819 (2). 129. arXiv:1603.00461. Bibcode:2016ApJ...819..129O. doi:10.3847/0004-637X/819/2/129. S2CID 119262750.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  14. ^ Jiang, Linhua; et al. (January 2021). "Evidence for GN-z11 as a luminous galaxy at redshift 10.957". Nature Astronomy. 5 (3): 256–261. arXiv:2012.06936. Bibcode:2021NatAs...5..256J. doi:10.1038/s41550-020-01275-y. S2CID 229156468.
  15. ^ "JADES NIRSpec Spectroscopy of GN-z11: Lyman-α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy" (PDF).
  16. ^ Roberts-Borsani, Guido; Treu, Tommaso; Chen, Wenlei; Morishita, Takahiro; Vanzella, Eros; Zitrin, Adi; Bergamini, Pietro; Castellano, Marco; Fontana, Adriano; Grillo, Claudio; Kelly, Patrick L.; Merlin, Emiliano; Paris, Diego; Rosati, Piero; Acebron, Ana (2023). "A shot in the Dark (Ages): a faint galaxy at $z=9.76$ confirmed with JWST". Nature Astronomy. 618: 480–483. arXiv:2210.15639. Bibcode:2023Natur.618..480R. doi:10.1038/s41586-023-05994-w.
  17. ^ T. Hashimoto; N. Laporte; K. Mawatari; R. S. Ellis; A. K. Inoue; E. Zackrisson; G. Roberts-Borsani; W. Zheng; Y. Tamura; F. E. Bauer; T. Fletcher; Y. Harikane; B. Hatsukade; N. H. Hayatsu; Y. Matsuda; H. Matsuo; T. Okamoto; M. Ouchi; R. Pello; C. Rydberg; I. Shimizu; Y. Taniguchi; H. Umehata; N. Yoshida (2019). "The Onset of Star Formation 250 Million Years After the Big Bang". Nature. 557 (7705): 312–313. arXiv:1805.05966. Bibcode:2018Natur.557..392H. doi:10.1038/s41586-018-0117-z. PMID 29765123. S2CID 21702406.
  18. ^ Adi Zitrin; Ivo Labbe; Sirio Belli; Rychard Bouwens; Richard S. Ellis; Guido Roberts-Borsani; Daniel P. Stark; Pascal A. Oesch; Renske Smit (2015). "Lyman-alpha Emission from a Luminous z = 8.68 Galaxy: Implications for Galaxies as Tracers of Cosmic Reionization". The Astrophysical Journal. 810 (1): L12. arXiv:1507.02679. Bibcode:2015ApJ...810L..12Z. doi:10.1088/2041-8205/810/1/L12. S2CID 11524667.
  19. ^ a b c Curti, Mirko; et al. (January 2023). "The chemical enrichment in the early Universe as probed by JWST via direct metallicity measurements at z 8". Monthly Notices of the Royal Astronomical Society. 518 (1): 425–438. arXiv:2207.12375. Bibcode:2023MNRAS.518..425C. doi:10.1093/mnras/stac2737.
  20. ^ a b c Carnall, A. C.; et al. (January 2023). "A first look at the SMACS0723 JWST ERO: spectroscopic redshifts, stellar masses, and star-formation histories". Monthly Notices of the Royal Astronomical Society: Letters. 518 (1): L45–L50. arXiv:2207.08778. Bibcode:2023MNRAS.518L..45C. doi:10.1093/mnrasl/slac136.
  21. ^ a b c Schaerer, D.; et al. (September 2022). "First look with JWST spectroscopy: Resemblance among z ~ 8 galaxies and local analogs". Astronomy & Astrophysics. 665: 6. arXiv:2207.10034. Bibcode:2022A&A...665L...4S. doi:10.1051/0004-6361/202244556. S2CID 252175886. L4.
  22. ^ a b c Katz, Harley; et al. (January 2023). "AFirst insights into the ISM at z > 8 with JWST: possible physical implications of a high [O III] λ4363/[O III] λ5007". Monthly Notices of the Royal Astronomical Society. 518 (1): 592–603. arXiv:2207.13693. Bibcode:2023MNRAS.518..592K. doi:10.1093/mnras/stac2657.
  23. ^ Laporte, N.; Ellis, R. S.; Boone, F.; Bauer, F. E.; Quénard, D.; Roberts-Borsani, G. W.; Pelló, R.; Pérez-Fournon, I.; Streblyanska, A. (2017). "Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy". The Astrophysical Journal. 832 (2): L21. arXiv:1703.02039. Bibcode:2017ApJ...837L..21L. doi:10.3847/2041-8213/aa62aa. S2CID 51841290.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  24. ^ Tamura, Y.; Mawatari, K.; Hashimoto, T.; Inoue, A. K.; Zackrisson, E.; Christensen, L.; Binggeli, C; Matsuda, Y.; Matsuo, H.; Takeuchi, T. T.; Asano, R. S.; Sunaga, K.; Shimizu, I.; Okamoto, T.; Yoshida, N.; Lee, M.; Shibuya, T.; Taniguchi, Y.; Umehata, H.; Hatsukade, B.; Kohno, K.; Ota, K. (2017). "Detection of the Far-infrared [O III] and Dust Emission in a Galaxy at Redshift 8.312: Early Metal Enrichment in the Heart of the Reionization Era". The Astrophysical Journal. 874 (1): 27. arXiv:1806.04132. Bibcode:2019ApJ...874...27T. doi:10.3847/1538-4357/ab0374. S2CID 55313459.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  25. ^ Tanvir, N. R.; Fox, D. B.; Levan, A. J.; Berger, E.; Wiersema, K.; Fynbo, J. P. U.; Cucchiara, A.; Krühler, T.; Gehrels, N.; Bloom, J. S.; Greiner, J.; Evans, P. A.; Rol, E.; Olivares, F.; Hjorth, J.; Jakobsson, P.; Farihi, J.; Willingale, R.; Starling, R. L. C.; Cenko, S. B.; Perley, D.; Maund, J. R.; Duke, J.; Wijers, R. A. M. J.; Adamson, A. J.; Allan, A.; Bremer, M. N.; Burrows, D. N.; Castro-Tirado, A. J.; et al. (2009). "A gamma-ray burst at a redshift of z~8.2". Nature. 461 (7268): 1254–7. arXiv:0906.1577. Bibcode:2009Natur.461.1254T. doi:10.1038/nature08459. PMID 19865165. S2CID 205218350.
  26. ^ a b Langeroodi, Danial; Hjorth, Jens; Chen, Wenlei; Kelly, Patrick L.; Williams, Hayley; Lin, Yu-Heng; Scarlata, Claudia; Zitrin, Adi; Broadhurst, Tom; Diego, Jose M.; Huang, Xiaosheng; Filippenko, Alexei V.; Foley, Ryan J.; Jha, Saurabh; Koekemoer, Anton M.; Oguri, Masamune; Perez-Fournon, Ismael; Pierel, Justin; Poidevin, Frederick; Strolger, Lou (2022). "Evolution of the Mass-Metallicity Relation from Redshift z≈8 to the Local Universe". The Astrophysical Journal. 804 (2). arXiv:2212.02491. Bibcode:2015ApJ...804L..30O. doi:10.1088/2041-8205/804/2/L30. S2CID 55115344.
  27. ^ P. A. Oesch; P. G. van Dokkum; G. D. Illingworth; R. J. Bouwens; I. Momcheva; B. Holden; G. W. Roberts-Borsani; R. Smit; M. Franx; I. Labbe; V. Gonzalez; D. Magee (2015). "A Spectroscopic Redshift Measurement for a Luminous Lyman Break Galaxy at z = 7.730 using Keck/MOSFIRE". The Astrophysical Journal. 804 (2): L30. arXiv:1502.05399. Bibcode:2015ApJ...804L..30O. doi:10.1088/2041-8205/804/2/L30. S2CID 55115344.
  28. ^ Song, M.; Finkelstein, S. L.; Livermore, R. C.; Capak, P. L.; Dickinson, M.; Fontana, A. (2016). "Keck/MOSFIRE Spectroscopy of z = 7–8 Galaxies: Lyman-alpha Emission from a Galaxy at z = 7.66". The Astrophysical Journal. 826 (2): 113. arXiv:1602.02160. Bibcode:2016ApJ...826..113S. doi:10.3847/0004-637X/826/2/113. S2CID 51806693.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  29. ^ Wang, Feige; Yang, Jinyi; Fan, Xiaohui; Hennawi, Joseph F.; Barth, Aaron J.; Banados, Eduardo; Bian, Fuyan; Boutsia, Konstantina; Connor, Thomas; Davies, Frederick B.; Decarli, Roberto; Eilers, Anna-Christina; Farina, Emanuele Paolo; Green, Richard; Jiang, Linhua; Li, Jiang-Tao; Mazzucchelli, Chiara; Nanni, Riccardo; Schindler, Jan-Torge; Venemans, Bram; Walter, Fabian; Wu, Xue-Bing; Yue, Minghao (2021). "A Luminous Quasar at Redshift 7.642". The Astrophysical Journal. 907 (1): L1. arXiv:2101.03179. Bibcode:2021ApJ...907L...1W. doi:10.3847/2041-8213/abd8c6. S2CID 231572944.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  30. ^ Bañados, Eduardo; et al. (6 December 2017). "An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5". Nature. 553 (7689): 473–476. arXiv:1712.01860. Bibcode:2018Natur.553..473B. doi:10.1038/nature25180. PMID 29211709. S2CID 205263326.
  31. ^ S. L. Finkelstein; C. Papovich; M. Dickinson; M. Song; V. Tilvi; A. M. Koekemoer; K. D. Finkelstein; B. Mobasher; H. C. Ferguson; M. Giavalisco; N. Reddy; M. L. N. Ashby; A. Dekel; G. G. Fazio; A. Fontana; N. A. Grogin; J.-S. Huang; D. Kocevski; M. Rafelski; B. J. Weiner; S. P. Willner (2013). "A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51". Nature. 502 (7472): 524–527. arXiv:1310.6031. Bibcode:2013Natur.502..524F. doi:10.1038/nature12657. PMID 24153304. S2CID 4448085.
  32. ^ Watson, Darach; Christensen, Lise; Knudsen, Kirsten Kraiberg; Richard, Johan; Gallazzi, Anna; Michałowski, Michał Jerzy (2015). "A dusty, normal galaxy in the epoch of reionization". Nature. 519 (7543): 327–330. arXiv:1503.00002. Bibcode:2015Natur.519..327W. doi:10.1038/nature14164. PMID 25731171. S2CID 2514879.
  33. ^ Larson, R. L.; Finkelstein, S. L.; Pirzkal, N.; Ryan, R.; Tilvi, V.; Malhotra, S.; Rhoads, J.; Finkelstein, K.; Jung, I.; Christensen, L.; Cimatti, A.; Ferreras, I.; Grogin, N.; Koekemoer, A. M.; Hathi, N.; O'Connell, R.; Östlin, G.; Pasquali, A.; Pharo, J.; Rothberg, B.; Windhorst, R. A. (2018). "Discovery of a z = 7.452 High Equivalent Width Lyman alpha Emitter from the Hubble Space Telescope Faint Infrared Grism Survey". The Astrophysical Journal. 858 (2): 113. arXiv:1712.05807. Bibcode:2018ApJ...858...94L. doi:10.3847/1538-4357/aab893. S2CID 119257857.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  34. ^ a b c Ono, Yoshiaki; Ouchi, Masami; Mobasher, Bahram; Dickinson, Mark; Penner, Kyle; Shimasaku, Kazuhiro; Weiner, Benjamin J.; Kartaltepe, Jeyhan S.; Nakajima, Kimihiko; Nayyeri, Hooshang; Stern, Daniel; Kashikawa, Nobunari; Spinrad, Hyron (2011). "Spectroscopic Confirmation of Three z-Dropout Galaxies at z = 6.844 – 7.213: Demographics of Lyman-Alpha Emission in z ~ 7 Galaxies". The Astrophysical Journal. 744 (2): 83. arXiv:1107.3159. Bibcode:2012ApJ...744...83O. doi:10.1088/0004-637X/744/2/83. S2CID 119306980.
  35. ^ Inoue, Akio K.; et al. (June 2016). "Detection of an oxygen emission line from a high redshift galaxy in the reionization epoch" (PDF). Science. 352 (6293): 1559–1562. arXiv:1606.04989. Bibcode:2016Sci...352.1559I. doi:10.1126/science.aaf0714. PMID 27312046. S2CID 206646433.
  36. ^ a b Vanzella; et al. (2011). "Spectroscopic Confirmation of Two Lyman Break Galaxies at Redshift Beyond 7". The Astrophysical Journal Letters. 730 (2): L35. arXiv:1011.5500. Bibcode:2011ApJ...730L..35V. doi:10.1088/2041-8205/730/2/L35. S2CID 53459241.
  37. ^ Daniel J. Mortlock; Stephen J. Warren; Bram P. Venemans; et al. (2011). "A luminous quasar at a redshift of z = 7.085". Nature. 474 (7353): 616–619. arXiv:1106.6088. Bibcode:2011Natur.474..616M. doi:10.1038/nature10159. PMID 21720366. S2CID 2144362.
  38. ^ Schenker, Matthew A.; et al. (January 2012). "Keck Spectroscopy of Faint 3 < z < 8 Lyman Break Galaxies: Evidence for a Declining Fraction of Emission Line Sources in the Redshift Range 6 < z < 8". The Astrophysical Journal. 744 (2): 7. arXiv:1107.1261. Bibcode:2012ApJ...744..179S. doi:10.1088/0004-637X/744/2/179. S2CID 119244384.
  39. ^ Fontana, A.; Vanzella, E.; Pentericci, L.; Castellano, M.; Giavalisco, M.; Grazian, A.; Boutsia, K.; Cristiani, S.; Dickinson, M.; Giallongo, E.; Maiolino, M.; Moorwood, A.; Santini, P. (2010). "The lack of intense Lyman~alpha in ultradeep spectra of z = 7 candidates in GOODS-S: Imprint of reionization?". The Astrophysical Journal. 725 (2): L205. arXiv:1010.2754. Bibcode:2010ApJ...725L.205F. doi:10.1088/2041-8205/725/2/L205. S2CID 119270473.
  40. ^ Rhoads, James E.; Hibon, Pascale; Malhotra, Sangeeta; Cooper, Michael; Weiner, Benjamin (2012). "A Lyman Alpha Galaxy at Redshift z = 6.944 in the COSMOS Field". The Astrophysical Journal. 752 (2): L28. arXiv:1205.3161. Bibcode:2012ApJ...752L..28R. doi:10.1088/2041-8205/752/2/L28. S2CID 118383532.
  41. ^ Bañados, Eduardo; Mazzucchelli, Chiara; Momjian, Emmanuel; Eilers, Anna-Christina; Wang, Feige; Schindler, Jan-Torge; Connor, Thomas; Andika, Irham Taufik; Barth, Aaron J.; Carilli, Chris; Davies, Frederick B.; Decarli, Roberto; Fan, Xiaohui; Farina, Emanuele Paolo; Hennawi, Joseph F.; Pensabene, Antonio; Stern, Daniel; Venemans, Bram P.; Wenzl, Lukas; Yang, Jinyi (2021). "The Discovery of a Highly Accreting, Radio-loud Quasar at z = 6.82". The Astrophysical Journal. 909 (1). Harvard University: 80. arXiv:2103.03295. Bibcode:2021ApJ...909...80B. doi:10.3847/1538-4357/abe239. S2CID 232135300. Retrieved 26 March 2021.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  42. ^ Guidry, Mike (2019). Modern general relativity: black holes, gravitational waves, and cosmology. Cambridge New York: Cambridge university press. ISBN 978-1-107-19789-3.